
MATLAB® Production Server™

Code Deployment

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Production Server™ Code Deployment

© COPYRIGHT 2012–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2014 Online only New for Version 1.2 (Release R2014a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Write Deployable MATLAB Code

1
Deployment Coding Guidelines . 1-2

State-Dependent Functions . 1-3
Does My MATLAB Function Carry State? 1-3
Defensive Coding Practices . 1-3
Techniques for Preserving State . 1-4

Deploying MATLAB Functions Containing MEX
Files . 1-6

Unsupported MATLAB Data Types for Client and
Server Marshaling . 1-7

Create a Deployable Archive from MATLAB
Code

2
Compile a Deployable Archive with the Production
Server Compiler App . 2-2

Compile a Deployable Archive from the Command
Line . 2-8
Execute Compiler Projects with deploytool 2-8
Compile a Deployable Archive with mcc 2-8

Modifying Deployed Functions . 2-10

iii

Customizing a Compiler Project

3
Customize the Installer . 3-2
Change the Application Icon . 3-2
Add Application Information . 3-3
Change the Splash Screen . 3-4
Change the Installation Path . 3-4
Change the Logo . 3-5
Edit the Installation Notes . 3-5

Manage Required Files in a Compiler Project 3-6
Dependency Analysis . 3-6
Using the Compiler Apps . 3-6
Using mcc . 3-7

Specify Files to Install with the Application 3-8

Manage Support Packages . 3-9

Functions

4

iv Contents

1

Write Deployable MATLAB
Code

• “Deployment Coding Guidelines ” on page 1-2

• “State-Dependent Functions” on page 1-3

• “Deploying MATLAB Functions Containing MEX Files” on page 1-6

• “Unsupported MATLAB Data Types for Client and Server Marshaling”
on page 1-7

1 Write Deployable MATLAB Code

Deployment Coding Guidelines
MATLAB coding guidelines are essentially the same for both the deployment
products and MATLAB® Production Server™ with important distinctions
regarding functions that depend on MATLAB state.

Functions you deploy with MATLAB Production Server cannot be assumed to
retain access to the same instance of the MATLAB Compiler Runtime, since
the workers can access a number of different MCR instances. Therefore, when
using MATLAB Production Server you must take extra care to ensure that
state has not been changed or invalidated. See “State-Dependent Functions”
on page 1-3 for more information.

Refer to “Write Deployable MATLAB Code” in the MATLAB Compiler™
documentation for general guidelines about deploying MATLAB code.

1-2

State-Dependent Functions

State-Dependent Functions
MATLAB code that you want to deploy often carries state—a specific data
value in a program or program variable.

Does My MATLAB Function Carry State?
Example of carrying state in a MATLAB program include, but are not limited
to:

• Modifying or relying on the MATLAB path and the Java® class path

• Accessing MATLAB state that is inherently persistent or global. Some
example of this include:

- Random number seeds

- Handle Graphics® root objects that retain data

- MATLAB or MATLAB toolbox settings and preferences

• Creating global and persistent variables.

• Loading MATLAB objects (MATLAB classes) into MATLAB. If you access a
MATLAB object in any way, it loads into MATLAB.

• Calling MEX files, Java methods, or C# methods containing static variables.

Defensive Coding Practices
If your MATLAB function not only carries state, but relies on it for your
function to properly execute, you must take additional steps (listed in this
section) to ensure state retention.

When you deploy your application, consider cases where you carry state, and
safeguard against that state’s corruption if needed. Assume that your state
may be changed and code defensively against that condition.

The following are examples of “defensive coding” practices:

Reset System-Generated Values in the Deployed Application
If you are using a random number seed, for example, reset it in your deployed
application program to ensure the integrity of your original MATLAB function.

1-3

1 Write Deployable MATLAB Code

Validate Global or Persistent Variable Values
If you must use global or persistent variables, always validate their value in
your deployed application and reset if needed.

Ensure Access to Data Caches
If your function relies on cached transaction replies, for instance, ensure
your deployed system and application has access to that cache outside of
the MATLAB environment.

Use Simple Data Types When Possible
Simple data types are usually not tied to a specific application and means of
storing state. Your options for choosing an appropriate state-preserving tool
increase as your data types become less complicated and specific.

Avoid Using MATLAB Callback Functions
Avoid using MATLAB callbacks, such as timer. Callback functions have
the ability to interrupt and override the current state of the MATLAB
Production Server worker and may yield unpredictable results in multiuser
environments.

Techniques for Preserving State
The most appropriate method for preserving state depends largely on the
type of data you need to save.

• Databases provide the most versatile and scalable means for retaining
stateful data. The database acts as a generic repository and can generally
work with any application in an enterprise development environment.
It does not impose requirements or restrictions on the data structure or
layout. Another related technique is to use comma-delimited files, in
applications such as Microsoft® Excel®.

• Data that is specific to a third-party programming language, such as Java
and C#, can be retained using a number of techniques. Consult the online
documentation for the appropriate third-party vendor for best practices
on preserving state.

1-4

State-Dependent Functions

Caution Using MATLAB LOAD and SAVE functions is often used to preserve
state in MATLAB applications and workspaces. While this may be successful
in some circumstances, it is highly recommended that the data be validated
and reset if needed, if not stored in a generic repository such as a database.

1-5

1 Write Deployable MATLAB Code

Deploying MATLAB Functions Containing MEX Files
If the MATLAB function you are deploying uses MEX files, ensure that
the system running MATLAB Production Server is running the version of
MATLAB Compiler used to create the MEX files.

Coordinate with your server administrator and application developer as
needed.

1-6

Unsupported MATLAB Data Types for Client and Server Marshaling

Unsupported MATLAB Data Types for Client and Server
Marshaling

These data types are not supported for marshaling between MATLAB
Production Server server instances and clients:

• MATLAB function handles

• Complex (imaginary) data

• Sparse arrays

1-7

1 Write Deployable MATLAB Code

1-8

2

Create a Deployable Archive
from MATLAB Code

• “Compile a Deployable Archive with the Production Server Compiler App”
on page 2-2

• “Compile a Deployable Archive from the Command Line” on page 2-8

• “Modifying Deployed Functions” on page 2-10

2 Create a Deployable Archive from MATLAB Code

Compile a Deployable Archive with the Production Server
Compiler App

To compile MATLAB code into a deployable archive:

1 Open the Production Server Compiler.

a On the toolstrip select the Apps tab on the toolstrip.

b Click the arrow at the far right of the tab to open the apps gallery.

c Click Production Server Compiler.

2-2

Compile a Deployable Archive with the Production Server Compiler App

Note To open an existing project, select it from the MATLAB Current
Folder panel.

2-3

2 Create a Deployable Archive from MATLAB Code

Note You can also launch the compiler using the
productionServerCompiler function.

2 In the Application Type section of the toolstrip, selectDeployable Archive.

Note If the Application Type section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

3 Specify the MATLAB files you want deployed in the package.

a In the Exported Functions section of the toolstrip, click the plus button.

Note If the Exported Functions section of the toolstrip is collapsed, you
can expand it by clicking the down arrow.

b In the file explorer that opens, locate and select one or more the MATLAB
files.

c Click Open to select the file and close the file explorer.

The names of the selected files are added to the list and a minus button
appears below the plus button. The name of the first file listed is used as
the default application name.

4 In the Packaging Options section of the toolstrip, specify how the installer
will deliver the MATLAB Compiler Runtime (MCR) with the archive.

Note If the Packaging Options section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

You can select one or both of the following options:

2-4

Compile a Deployable Archive with the Production Server Compiler App

• Runtime downloaded from web — Generates an installer that
downloads the MCR installer from the Web.

• Runtime included in package — Generates an installer that includes
the MCR installer.

Note Selecting both options creates two installers.

Regardless of the options selected the generated installer scans the target
system to determine if there is an existing installation of the appropriate
MCR. If there is not, the installer installs the MCR.

5 Specify the name of any generated installers.

6 In the Application Information and Additional Installer Options
sections of the compiler, customize the look and feel of the generated installer.

You can change the information used to identify the application data used
by the installer:

• Splash screen

• Installer icon

• Version

• Name and contact information of the archive’s author

• Brief summary of the archive’s purpose

• Detailed description of the archive

You can also change the default location into which the archive is installed
and provide some notes to the installer.

All of the provided information is displayed as the installer runs.

For more information see “Customize the Installer” on page 3-2.

2-5

2 Create a Deployable Archive from MATLAB Code

7 In the Files required for your application to run section of the compiler,
verify that all of the files required by the deployed MATLAB functions are
listed.

Note These files are compiled into the generated binaries along with the
exported files.

The built-in dependency checker will automatically populate this section with
the appropriate files. However, if needed you can manually add any files it
missed.

For more information see “Manage Required Files in a Compiler Project”
on page 3-6.

8 In the Files installed with your application section of the compiler,
verify that any additional non-MATLAB files you want installed with the
application are listed.

Note These files are placed in the applications folder of the installation.

This section automatically lists:

• Generated deployable archive

• Readme file

You can manually add files to the list. Additional files can include
documentation, sample data files, and examples to accompany the application.

For more information see “Specify Files to Install with the Application” on
page 3-8.

9 Click the Settings button to customize the flags passed to the compiler and
the folders to which the generated files are written.

10 Click the Package button to compile the MATLAB code and generate any
installers.

2-6

Compile a Deployable Archive with the Production Server Compiler App

11 Verify that the generated output contains:

• for_redistribution— A folder containing the installer to distribute the
archive

• for_testing — A folder containing the raw generated files to create the
installer

• for_redistribution_files_only — A folder containing only the files
needed to redistribute the archive

• PackagingLog.txt— A log file generated by the compiler

2-7

2 Create a Deployable Archive from MATLAB Code

Compile a Deployable Archive from the Command Line

In this section...

“Execute Compiler Projects with deploytool” on page 2-8

“Compile a Deployable Archive with mcc” on page 2-8

You can compile deployable archives from both the MATLAB command line
and the system terminal command line:

• deploytool invokes the compiler app to execute a pre-saved compiler
project

• mcc invokes the raw compiler

Execute Compiler Projects with deploytool
The deploytool command has two flags to invoke the compiler without
opening a window:

• -build project_name— Invoke the compiler to build the project and do
not generate an installer.

• -package project_name — Invoke the compiler to build the project and
generate an installer.

For example, deploytool -package magicsqaure generates of the binary
files defined by the magicaqure project and packages them into an installer
that you can distribute to others.

Compile a Deployable Archive with mcc
The mcc command invokes the raw compiler and provides fine-level control
over the compilation of the deployable archive. It, however, cannot package
the results in an installer.

To invoke the compiler to generate a deployable arcive use the -W
CTF:component_name flag with mcc. The -W CTF:component_name flag
creates a deployable archive called component_name.ctf.

For compiling deployable archives, you can also use the following options.

2-8

Compile a Deployable Archive from the Command Line

Compiler Java Options

Option Description

-a filePath Add any files on the path to the
generated binary.

-d outFolder Specify the folder into which the
results of compilation are written.

class{className:mfilename...} Specify that an additional class is
generated that includes methods for
the listed MATLAB files.

2-9

2 Create a Deployable Archive from MATLAB Code

Modifying Deployed Functions
Once you have built a deployable archive, you can modify your MATLAB code,
recompile, and see the change instantly reflected in the archive hosted on
your server. This is known as “hot deploying” or “redeploying” a function.

To Hot Deploy, you must have a server created and running, with the built
deployable archive located in the server’s auto_deploy folder.

The server deploys the updated version of your archive when on the following
occurs:

• Compiled archive has an updated time stamp

• Change has occurred to the archive contents (new file or deleted file)

It takes a maximum of five seconds to redeploy a function using Hot
Deployment. It takes a maximum of ten seconds to undeploy a function
(remove the function from being hosted).

2-10

3

Customizing a Compiler
Project

• “Customize the Installer” on page 3-2

• “Manage Required Files in a Compiler Project” on page 3-6

• “Specify Files to Install with the Application” on page 3-8

• “Manage Support Packages” on page 3-9

3 Customizing a Compiler Project

Customize the Installer

In this section...

“Change the Application Icon” on page 3-2

“Add Application Information” on page 3-3

“Change the Splash Screen” on page 3-4

“Change the Installation Path” on page 3-4

“Change the Logo” on page 3-5

“Edit the Installation Notes” on page 3-5

Change the Application Icon
The application icon is used for the generated installer. For standalone
applications, it is also the application’s icon.

You can change the default icon in Application Information. To set a
custom icon:

1 Click the graphic to the left of the Application name field.

A window previewing the icon opens.

3-2

Customize the Installer

2 Click Select icon.

3 Using the file explorer, locate the graphic file to use as the application icon.

4 Select the graphic file.

5 Click OK to return to the icon preview.

6 Select Use mask to fill any blank spaces around the icon with white.

7 Select Use border to add a border around the icon.

8 Click Save and Use to return to the main compiler window.

Add Application Information
The Application Information section of the compiler app allows you to
provide these values:

• Name

Determines the name of the installed MATLAB components. For example,
if the name is foo, the installed executable would be foo.exe, the
Windows® start menu entry would be foo. The folder created for the
application would be InstallRoot/foo.

The default value is the name of the first function listed in the Main
File(s) field of the compiler.

• Version

The default value is 1.0.

• Author name

• Support e-mail address

• Company name

Determines the full installation path for the installed MATLAB
components. For example, if the company name is bar, the full installation
path would be InstallRoot/bar/ApplicationName.

• Summary

• Description

3-3

3 Customizing a Compiler Project

This information is all optional and, unless otherwise stated, is only used for
display purposes. It appears on the first page of the installer. On Windows
systems, this information is also displayed in the Windows Add/Remove
Programs control panel.

Change the Splash Screen
The installer’s splash screen displays after the installer is started. It is
displayed, along with a status bar, while the installer initializes.

You can change the default image by clicking the Select custom splash
screen link in Application Information. When the file explorer opens,
locate and select a new image.

Note You can drag and drop a custom image onto the default splash screen.

Change the Installation Path
Default Installation Paths on page 3-4 lists the default path the installer will
use when installing the compiled binaries onto a target system.

Default Installation Paths

Windows C:\Program
Files\companyName\appName

Mac OS X /Applications/companyName/appName

Linux® /usr/companyName/appName

You can change the default installation path by editing the Default
installation folder field under Additional Installer Options.

The Default installation folder field has two parts:

• root folder — A drop down list that offers options for where the install
folder is installed. Custom Installation Roots on page 3-5 lists the optional
root folders for each platform.

3-4

Customize the Installer

Custom Installation Roots

Windows C:\Users\userName\AppData

Linux /usr/local

• install folder — A text field specifying the path appended to the root folder.

Change the Logo
The logo displays after the installer is started. It is displayed on the right
side of the installer.

You change the default image by clicking the Select custom logo link in
Additional Installer Options. When the file explorer opens, locate and
select a new image.

Note You can drag and drop a custom image onto the default logo.

Edit the Installation Notes
Installation notes are displayed once the installer has successfully installed
the packaged files on the target system. They can provide useful information
concerning any additional set up that is required to use the installed binaries
or simply provide instructions for how to run the application.

The field for editing the installation notes is in Additional Installer
Options.

3-5

3 Customizing a Compiler Project

Manage Required Files in a Compiler Project

In this section...

“Dependency Analysis” on page 3-6

“Using the Compiler Apps” on page 3-6

“Using mcc” on page 3-7

Dependency Analysis
The compiler uses a dependency analysis function to automatically determine
what additional MATLAB files are required for the application to compile and
run. These files are automatically compiled into the generated binary. The
compiler does not generate any wrapper code allowing direct access to the
functions defined by the required files.

Using the Compiler Apps
If you are using one of the compiler apps, the required files discovered by
the dependency analysis function are listed in the Files required by your
application to run field.

To add files:

1 Click the plus button in the field.

2 Select the desired file from the file explorer.

3 Click OK.

To remove files:

1 Select the desired file.

2 Press the Delete key.

Caution Removing files from the list of required files may cause your
application to not compile or to not run properly when deployed.

3-6

Manage Required Files in a Compiler Project

Using mcc
If you are using mcc to compile your MATLAB code, the compiler does not
display a list of required files before running. Instead, it compiles all of the
required files that are discovered by the dependency analysis function and
adds them to the generated binary file.

You can add files to the list by passing one, or more, -a arguments to mcc.
The -a arguments add the specified files to the list of files to be added into the
generated binary. For example, -a hello.m adds the file hello.m to the list
of required files and -a ./foo adds all of the files in foo, and its subfolders,
to the list of required files.

3-7

3 Customizing a Compiler Project

Specify Files to Install with the Application
The compiler apps package files to install along with the ones it generates. By
default the installer includes a readme file with instructions on installing the
MATLAB Compiler Runtine(MCR) and configuring it.

These files are listed in the Files installed with your application section
of the app.

to add files to the list:

1 Click the plus button in the field.

2 Select the desired file from the file explorer.

3 Click OK to close the file explorer.

To remove files from the list:

1 Select the desired file.

2 Press the Delete key.

Caution Removing the binary targets from the list results in an installer
that does not install the intended functionality.

When installed on a target computer, the files listed in the Files installed
with your application are placed in the application folder.

3-8

Manage Support Packages

Manage Support Packages
Many MATLAB toolboxes use support packages to interact with hardware
or to provide additional processing capabilities. If your MATLAB code uses
a toolbox with an installed support package, MATLAB Compiler displays a
Suggested Support Packages section.

The list displays all installed support packages that your MATLAB code
requires. The list is determined using these criteria:

• the support package is installed

• your code has a direct dependency on the support package

• your code is dependent on the base product of the support package

3-9

3 Customizing a Compiler Project

• your code is dependent on at least one of the files listed as a dependency
in the mcc.xml file of the support package, and the base product of the
support package is MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that MATLAB Compiler
cannot package. In this case, the compiler adds the information to the
installation notes. You can edit installation notes in the Additional Installer
Options section of the app. To remove the installation note text, deselect the
support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you
deselect the support package.

3-10

4

Functions

productionServerCompiler

Purpose Build and package functions for use with MATLAB Production Server

Syntax productionServerCompiler [-win32] [[[-build] |
[-project]]project_name]

Description productionServerCompiler opens the MATLAB compiler for the
creation of a new compiler project

productionServerCompiler project_name opens the MATLAB
compiler with the project preloaded.

productionServerCompiler -build project_name runs the MATLAB
compiler to build the specified project. The installer is not generated.

productionServerCompiler -package project_name runs the
MATLAB compiler to build and package the specified project. The
installer is generated.

productionServerCompiler -win32 instructs the compiler to build a
32-bit application on a 64-bit system when you use the same MATLAB
installation root (matlabroot) for both 32-bit and 64-bit versions of
MATLAB.

Input
Arguments

project_name - name of the project to be compiled

Specify the name of a previously saved MATLAB Compiler project. The
project must be on the current path.

4-2

deploytool

Purpose Compile and package functions for external deployment

Syntax deploytool [-win32] [[[-build] | [-project]]project_name]

Description deploytool opens the MATLAB Compiler app.

deploytool project_name opens the MATLAB Compiler app with
the project preloaded.

deploytool -build project_name runs the MATLAB Compiler to
build the specified project. The installer is not generated.

deploytool -package project_name runs the MATLAB Compiler to
build and package the specified project. The installer is generated.

deploytool -win32 instructs the compiler to build a 32-bit application
on a 64-bit system when the following are true:

• You use the same MATLAB installation root (matlabroot) for both
32-bit and 64-bit versions of MATLAB.

• You are running from a Windows command line (not a MATLAB
command line).

Input
Arguments

project_name - name of the project to be compiled

Specify the name of a previously saved MATLAB Compiler project. The
project must be on the current path.

4-3

mcc

Purpose Compile MATLAB functions for deployment

Syntax mcc {-e} | {-m} [-a filename]… [-B filename[:arg]…] [-C] [-d outFolder]
[-f filename] [-g] [-I directory]… [-K] [-M string] [-N] [-o filename]
[-p path]… [-R option] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename

mcc -l [-a filename]… [-B filename[:arg]…] [-C] [-d outFolder] [-f
filename] [-g] [-I directory]… [-K] [-M string] [-N] [-o filename]
[-p path]… [-R option] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename…

mcc -c [-a filename]… [-B filename[:arg]…] [-C] [-d outFolder] [-f
filename] [-g] [-I directory]… [-K] [-M string] [-N] [-o filename]
[-p path]… [-R option] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename…

mcc -W cpplib:component_name -T link:lib [-a filename]… [-B
filename[:arg]…] [-C] [-d outFolder] [-f filename] [-g] [-I directory]…
[-K] [-M string] [-N] [-o filename] [-p path]… [-R option] [-S] [-v] [-w
option[:msg]] [-win32] [-Y filename] mfilename…

mcc -W dotnet:component_name,[className], [framework_version],
security, remote_type -T link:lib [-a filename]… [-B filename[:arg]…]
[-C] [-d outFolder] [-f filename] [-I directory]… [-K] [-M string] [-N]
[-p path]… [-R option] [-S] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename… [class{className:[mfilename]…}]…

mcc -W excel:component_name,[className], [version] -T link:lib [-a
filename]… [-b] [-B filename[:arg]…] [-C] [-d outFolder] [-f filename]
[-I directory]… [-K] [-M string] [-N] [-p path]… [-R option] [-u] [-v]
[-w option[:msg]] [-win32] [-Y filename] mfilename…

mcc -W 'java:packageName,[className]' [-a filename]… [-b]
[-B filename[:arg]…] [-C] [-d outFolder] [-f filename] [-I
directory]… [-K] [-M string] [-N] [-p path]… [-R option]
[-S] [-v] [-w option[:msg]] [-win32] [-Y filenamem] filename…
[class{className:[mfilename]…}]…

4-4

mcc

mcc -W CTF:component_name [-a filename]… [-b] [-B filename[:arg]…]
[-d outFolder] [-f filename] [-I directory]… [-K] [-M string] [-N] [-p
path]… [-R option] [-S] [-v] [-w option[:msg]] [-win32] [-Y filenamem]
filename… [class{className:[mfilename]…}]…

mcc -?

Description mcc -m mfilename compiles the function into a standalone application.

This is equivalent to -W main -T link:exe.

mcc -e mfilename compiles the function into a standalone application
that does not open an MS-DOS® command window.

This is equivalent to -W WinMain -T link:exe.

mcc -l mfilename... compiles the listed functions into a C shared
library and generates C wrapper code for integration with other
applications.

This is equivalent to -W lib:libname -T link:lib.

mcc -c mfilename... generates C wrapper code for the listed
functions.

This is equivalent to -W lib:libname -T codegen.

mcc -W cpplib:component_name -T link:lib mfilename...
compiles the listed functions into a C++ shared library and generates
C++ wrapper code for integration with other applications.

mcc -W
dotnet:component_name,className,framework_version,security,
remote_type -T link:lib mfilename... creates a .NET
component from the specified files.

4-5

mcc

• component_name — Specifies the name of the component
and its namespace, which is a period-separated list, such as
companyname.groupname.component.

• className— Specifies the name of the .NET class to be created.

• framework_version— Specifies the version of the Microsoft .NET
Framework you want to use to compile the component. Specify either:

- 0.0— Use the latest supported version on the target machine.

- version_major.version_minor — Use a specific version of the
framework.

Features are often version-specific. Consult the documentation
for the feature you are implementing to get the Microsoft .NET
Framework version requirements.

• security — Specifies whether the component to be created is a
private assembly or a shared assembly.

- To create a private assembly, specify Private.

- To create a shared assembly, specify the full path to the encryption
key file used to sign the assembly.

• remote_type— Specifies the remoting type of the component. Values
are remote and local.

By default, the compiler generates a single class with a method for each
function specified on the command line. You can instruct the compiler
to create multiple classes using class{className:mfilename...}....
className specifies the name of the class to create using mfilename.

mcc -W excel:component_name,className, version -T link:lib
mfilename... creates a Microsoft Excel component from the specified
files.

• component_name — Specifies the name of the component
and its namespace, which is a period-separated list, such as
companyname.groupname.component.

4-6

mcc

• className — Specifies the name of the class to be created. If you
do not specify the class name, mcc uses the component_name as the
default.

• version — Specifies the version of the component specified as
major.minor.

- major— Specifies the major version number. If you do not specify
a version number, mcc uses the latest version.

- minor— Specifies the minor version number. If you do not specify
a version number, mcc uses the latest version.

mcc -W 'java:packageName,className' mfilename... creates a
Java package from the specified files.

• packageName — Specifies the name of the Java package
and its namespace, which is a period-separated list, such as
companyname.groupname.component.

• className— Specifies the name of the class to be created. If you do
not specify the class name, mcc uses the last item in packageName.

By default, the compiler generates a single class with a method for each
function specified on the command line. You can instruct the compiler
to create multiple classes using class{className:mfilename...}....
className specifies the name of the class to create using mfilename.

mcc -W CTF:component_name instructs the compiler to create a
deployable CTF archive that is deployable in a MATLAB Production
Server instance.

mcc -? displays help.

Tip You can issue the mcc command either from the MATLAB
command prompt or the DOS or UNIX® command line.

4-7

mcc

Options -a Add to Archive

Add a file to the CTF archive using

-a filename

to specify a file to be directly added to the CTF archive. Multiple -a
options are permitted. MATLAB Compiler looks for these files on the
MATLAB path, so specifying the full path name is optional. These files
are not passed to mbuild, so you can include files such as data files.

If only a folder name is included with the -a option, the entire contents
of that folder are added recursively to the CTF archive. For example:

mcc -m hello.m -a ./testdir

In this example, testdir is a folder in the current working folder. All
files in testdir, as well as all files in subfolders of testdir, are added
to the CTF archive, and the folder subtree in testdir is preserved in
the CTF archive.

If a wildcard pattern is included in the file name, only the files in
the folder that match the pattern are added to the CTF archive and
subfolders of the given path are not processed recursively. For example:

mcc -m hello.m -a ./testdir/*

In this example, all files in ./testdir are added to the CTF archive and
subfolders under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

In this example, all files with the extension .m under ./testdir are
added to the CTF archive and subfolders of ./testdir are not processed
recursively.

All files added to the CTF archive using -a (including those that match
a wildcard pattern or appear under a folder specified using -a) that do
not appear on the MATLAB path at the time of compilation causes
a path entry to be added to the deployed application’s run-time path

4-8

mcc

so that they appear on the path when the deployed application or
component executes.

When files are included, the absolute path for the DLL and header files
is changed. The files are placed in the .\exe_mcr\ folder when the CTF
file is expanded. The file is not placed in the local folder. This folder
is created from the CTF file the first time the EXE file is executed.
The isdeployed function is provided to help you accommodate this
difference in deployed mode.

The -a switch also creates a .auth file for authorization purposes.
It ensures that the executable looks for the DLL- and H-files in the
exe_mcr\exe folder.

Caution

If you use the -a flag to include a file that is not on the MATLAB path,
the folder containing the file is added to the MATLAB dependency
analysis path. As a result, other files from that folder might be included
in the compiled application.

Note Currently, * is the only supported wildcard.

Note If the -a flag is used to include custom Java classes, standalone
applications work without any need to change the classpath as long
as the Java class is not a member of a package. The same applies for
JAR files. However, if the class being added is a member of a package,
the MATLAB code needs to make an appropriate call to javaaddpath to
update the classpath with the parent folder of the package.

4-9

mcc

-b Generate Excel Compatible Formula Function

Generate a Visual Basic® file (.bas) containing the Microsoft Excel
Formula Function interface to the COM object generated by MATLAB
Compiler. When imported into the workbook Visual Basic code, this
code allows the MATLAB function to be seen as a cell formula function.
This option requires MATLAB Builder™ EX.

-B Specify Bundle File

Replace the file on the mcc command line with the contents of the
specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle file filename should contain only mcc command-line
options and corresponding arguments and/or other file names. The file
might contain other -B options. A bundle file can include replacement
parameters for Compiler options that accept names and version
numbers. See “Using Bundle Files to Build MATLAB Code” for a list of
the bundle files included with MATLAB Compiler.

-C Do Not Embed CTF Archive by Default

Override automatically embedding the CTF archive in C/C++ and
main/Winmain shared libraries and standalone binaries by default.

-d Specified Folder for Output

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder.

-f Specified Options File

Override the default options file with the specified options file. Use

-f filename

4-10

mcc

to specify filename as the options file when calling mbuild. This
option lets you use different ANSI compilers for different invocations of
MATLAB Compiler. This option is a direct pass-through to mbuild.

-g Generate Debugging Information

Include debugging symbol information for the C/C++ code generated
by MATLAB Compiler. It also causes mbuild to pass appropriate
debugging flags to the system C/C++ compiler. The debug option
lets you backtrace up to the point where you can identify if the
failure occurred in the initialization of MCR, the function call, or the
termination routine. This option does not let you debug your MATLAB
files with a C/C++ debugger.

-G Debug Only

Same as -g.

-I Add Folder to Include Path

Add a new folder path to the list of included folders. Each -I option
adds a folder to the beginning of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for
MATLAB files, followed by directory2. This option is important for
standalone compilation where the MATLAB path is not available.

-K Preserve Partial Output Files

Direct mcc to not delete output files if the compilation ends prematurely,
due to error.

The default behavior of mcc is to dispose of any partial output if the
command fails to execute successfully.

-M Direct Pass Through

Define compile-time options. Use

-M string

4-11

mcc

to pass string directly to mbuild. This provides a useful mechanism for
defining compile-time options, e.g., -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M
option is used.

-N Clear Path

Passing -N effectively clears the path of all folders except the following
core folders (this list is subject to change over time):

• matlabroot\toolbox\matlab

• matlabroot\toolbox\local

• matlabroot\toolbox\compiler\deploy

It also retains all subfolders of the above list that appear on the
MATLAB path at compile time. Including -N on the command line lets
you replace folders from the original path, while retaining the relative
ordering of the included folders. All subfolders of the included folders
that appear on the original path are also included. In addition, the -N
option retains all folders that you included on the path that are not
under matlabroot\toolbox.

-o Specify Output Name

Specify the name of the final executable (standalone applications only).
Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable,
possibly platform-dependent, extension is added to the specified name
(e.g., .exe for Windows standalone applications).

4-12

mcc

-p Add Folder to Path

Use in conjunction with the required option -N to add specific folders
(and subfolders) under matlabroot\toolbox to the compilation
MATLAB path in an order sensitive way. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an
absolute path, it is assumed to be under the current working folder. The
rules for how these folders are included follow.

• If a folder is included with -p that is on the original MATLAB path,
the folder and all its subfolders that appear on the original path are
added to the compilation path in an order-sensitive context.

• If a folder is included with -p that is not on the original MATLAB
path, that folder is not included in the compilation. (You can use
-I to add it.)

If a path is added with the -I option while this feature is active (-N has
been passed) and it is already on the MATLAB path, it is added in the
order-sensitive context as if it were included with -p. Otherwise, the
folder is added to the head of the path, as it normally would be with -I.

-R Run-Time

Provides MCR run-time options. The syntax is as follows:

-R option

Option Description

-logfile
filename

Specify a log file name.

-nodisplay Suppress the MATLAB nodisplay run-time warning.

-nojvm Do not use the Java Virtual Machine (JVM).

4-13

mcc

Option Description

-startmsg Customizable user message displayed at MCR
initialization time.

-completemsg Customizable user message displayed when MCR
initialization is complete.

Note Not all -R options are available for all mcc targets.

Caution

When running on Mac OS X, if -nodisplay is used as one of the
options included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

-S Create Singleton MCR Context

The standard behavior for the MCR is that every instance of a
class gets its own runtime context. This runtime context includes a
global MATLAB workspace for variables such as the path and a base
workspace for each function in the class. If multiple instances of a class
are created, each instance gets an independent context. This ensures
that changes made to the global, or base, workspace in one instance of
the class does not effect other instances of the same class.

In a singleton MCR, all instances of a class share the runtime context.
If multiple instances of a class are created, the use the runtime context
created by the first instance. This saves start up time and some
resources. However, any changes made to the global workspace or the
base workspace by one instance impacts all of the class instances. For
example, if instance1 creates a global variable A in a singleton MCR,
the instance2 will be able to use variable A.

4-14

mcc

-T Specify Target Stage

Specify the output target phase and type.

Use the syntax -T target to define the output type. Target values
are as follow.

Target Description

compile:exe Generate a C/C++ wrapper file
plus compile C/C++ files to object
form suitable for linking into a
standalone application.

compile:lib Generate a C/C++ wrapper file
plus compile C/C++ files to object
form suitable for linking into a
shared library/DLL.

link:exe Same as compile:exe plus links
object files into a standalone
application.

link:lib Same as compile:lib plus
links object files into a shared
library/DLL.

-u Register COM Component for the Current User

Register COM component for the current user only on the development
machine. The argument applies only for generic COM component and
Microsoft Excel add-in targets only.

-v Verbose

Display the compilation steps, including:

• MATLAB Compiler version number

• The source file names as they are processed

• The names of the generated output files as they are created

• The invocation of mbuild

4-15

mcc

The -v option passes the -v option to mbuild and displays information
about mbuild.

-w Warning Messages

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings. This table lists the syntaxes.

Syntax Description

-w list Generate a table that maps <string> to
warning message for use with enable,
disable, and error. “Warning Messages”,
lists the same information.

-w enable Enable complete warnings.

-w
disable[:<string>]

Disable specific warnings associated with
<string>. “Warning Messages”, lists
the <string> values. Omit the optional
<string> to apply the disable action to
all warnings.

-w enable[:<string>] Enable specific warnings associated with
<string>. “Warning Messages”, lists
the <string> values. Omit the optional
<string> to apply the enable action to all
warnings.

-w error[:<string>] Treat specific warnings associated with
<string> as an error. Omit the optional
<string> to apply the error action to all
warnings.

4-16

mcc

Syntax Description

-w off[:<string>]
[<filename>]

Turn warnings off for specific error
messages defined by <string>. You can
also narrow scope by specifying warnings
be turned off when generated by specific
<filename>s.

-w on[:<string>]
[<filename>]

Turn warnings on for specific error
messages defined by <string>. You can
also narrow scope by specifying warnings
be turned on when generated by specific
<filename>s.

It is also possible to turn warnings on or off in your MATLAB code.

For example, to turn warnings off for deployed applications (specified
using isdeployed) in your startup.m, you write:

if isdeployed
warning off

end

To turn warnings on for deployed applications, you write:

if isdeployed
warning on

end

-win32 Run in 32-Bit Mode

Use this option to build a 32-bit application on a 64-bit system only
when the following are true:

• You have a 32-bit installation of MATLAB.

• You use the same MATLAB installation root (matlabroot) for both
32-bit and 64-bit versions of MATLAB.

4-17

mcc

• You are running from a Windows command line.

-Y License File

Use

-Y license.lic

to override the default license file with the specified argument.

4-18

	toc
	Write Deployable MATLAB Code
	Deployment Coding Guidelines
	State-Dependent Functions
	Does My MATLAB Function Carry State?
	Defensive Coding Practices
	Reset System-Generated Values in the Deployed Application
	Validate Global or Persistent Variable Values
	Ensure Access to Data Caches
	Use Simple Data Types When Possible
	Avoid Using MATLAB Callback Functions

	Techniques for Preserving State

	Deploying MATLAB Functions Containing MEX Files
	Unsupported MATLAB Data Types for Client and Server Marshaling

	Create a Deployable Archive from MATLAB Code
	Compile a Deployable Archive with the Production Server Compiler
	Compile a Deployable Archive from the Command Line
	Execute Compiler Projects with deploytool
	Compile a Deployable Archive with mcc

	Modifying Deployed Functions

	Customizing a Compiler Project
	Customize the Installer
	Change the Application Icon
	Add Application Information
	Change the Splash Screen
	Change the Installation Path
	Change the Logo
	Edit the Installation Notes

	Manage Required Files in a Compiler Project
	Dependency Analysis
	Using the Compiler Apps
	Using mcc

	Specify Files to Install with the Application
	Manage Support Packages

	Functions

	tables
	Compiler Java Options
	Default Installation Paths
	Custom Installation Roots

